Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

## Xiaofeng Zhang, Deguang Huang, Chengbing Ma, Changneng Chen and Qiutian Liu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's
Republic of China
Correspondence e-mail: Iqt@ms.fjirsm.ac.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
$R$ factor $=0.064$
$w R$ factor $=0.191$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

## (Acetylacetonato)bis( $1,10^{\prime}$-phenanthroline- $N, N^{\prime}$ )manganese(II) perchlorate

The crystal structure of the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\right.$ $\left.\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)$, contains a monomeric $\left[\mathrm{Mn}(\mathrm{phen})_{2}{ }^{-}\right.$ (acac)] ${ }^{+}$cation and a perchlorate anion [phen is $1,10^{\prime}$ phenanthroline $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$ and acac is acetylacetonate $\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)$ ]. The $\mathrm{Mn}^{\text {II }}$ ion is coordinated by four N atoms from the phen ligands $[\mathrm{Mn}-\mathrm{N} 2.253$ (4)-2.322 (4) $\AA$ ] and two O atoms of the acac ligand [ $\mathrm{Mn}-\mathrm{O} 2.116$ (3) and 2.124 (3) $\AA$ ] in chelating mode, forming a distorted octahedral geometry.

## Comment

Considerable attention has been focused on the bioinorganic chemistry of Mn and, in particular, on multinuclear Mn metalloenzymes, such as the tetra-Mn in the oxygen-evolving centre (OEC) of photosystem II (PSII) in green plants (Wieghardt, 1989). It is thought that the coordination environment of the Mn in OEC consists essentially of the ligands with O and N donor atoms, and the binding of water to the Mn site may be important for the oxidation of water for the evolution of dioxygen. In recent years, Mn-phen (phen is $1,10^{\prime}$-phenanthroline) complexes have been extensively studied as model compounds for simulating OEC in PSII (Manchanda et al., 1994). In a reaction system containing phen, $\mathrm{Mn}(\mathrm{acac})_{3}$ (acac is acetylacetonate) and dicarboxylic acid, we isolated the title complex, $\left[\mathrm{Mn}(\mathrm{phen})_{2}(\mathrm{acac})\right] \mathrm{ClO}_{4}$, (I), which contains three different chelating ligands in the cation. Here, we describe its synthesis and crystal structure.

(I)

The crystal structure of (I) is composed of a monomeric $\left[\mathrm{Mn}(\mathrm{phen})_{2}(\mathrm{acac})\right]^{+}$cation and one perchlorate anion, as illustrated in Fig. 1. It is noted that all three ligands coordinate to the $\mathrm{Mn}^{\mathrm{II}}$ ion in chelating mode, leading to a serious distortion from the octahedral configuration, with chelating angles of $73.85(14)$ and $72.66(14)^{\circ}$ for $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ and $85.13(13)^{\circ}$ for $\mathrm{O}-\mathrm{Mn}-\mathrm{O}$.

In addition to $\left[\mathrm{Mn}(\mathrm{phen})_{3}\right]^{2+}$ complexes having three phen chelating ligands (Drew et al., 1989), only two examples of an $\mathrm{Mn}-\mathrm{phen}$ complex containing three different chelating ligands

Received 25 July 2002 Accepted 7 August 2002 Online 16 August 2002


Figure 1
The structure of (I), showing 30\% probability displacement ellipsoids. H atoms have been omitted for clarity.
were found in the literature, namely $\left[\mathrm{Mn}(\mathrm{phen})(\mathrm{acac})_{2}\right\}$ ] (Stephens, 1977) and $\left[\mathrm{Mn}(\text { phen })_{2}\left\{\mathrm{CH}_{2}(\mathrm{COO})_{2}\right\}\right]$ (Wang et al., 2000)

All the atoms in the phen ligands of (I), including the $\mathrm{Mn}^{\mathrm{II}}$ ion, form a perfect plane, the largest deviation from the leastsquares plane being $0.0148 \AA$, and the phen planes are inclined at $83.4^{\circ}$ with respect to each other. The acac ligand is also planar and the $\mathrm{Mn}^{\mathrm{II}}$ atom lies $0.2 \AA$ from the acac plane.

The $\mathrm{Mn}-\mathrm{N}$ bond lengths in (I) are in the range 2.253 (4)2.322 (4) $\AA$, and the $\mathrm{Mn}-\mathrm{O}$ bond lengths are in the range 2.116 (3) -2.124 (3) Å. The phenanthroline exhibits its usual acute $\mathrm{N} \cdots \mathrm{N}$ bite distances [N1‥N2 2.723 (3) and N3. N 4 2.720 (3) $\AA$ ] , and the $\mathrm{N}-\mathrm{Mn}-\mathrm{N}$ angles are very close to those found in $\left[\mathrm{Mn}(\mathrm{phen})_{2} \mathrm{Cl}_{2}\right]$ (McCann et al., 1998), $\left[\mathrm{Mn}(\mathrm{phen})_{2^{-}}\right.$ $\left.(\mathrm{NCS})_{2}\right]$ (Holleman et al., 1994) and $\left[\mathrm{Mn}(\text { phen })_{2}\left(\mathrm{~N}_{3}\right)_{2}\right]$ (Shen et al., 1999).

The packing diagram for (I) seems to show weak $\pi \cdots \pi$ stacking of pairs of phen planes between neighbouring $\left[\mathrm{Mn}(\mathrm{phen})_{2}(\mathrm{acac})\right]^{+}$cations, with the characteristic interplanar distance of $3.6 \AA$, slightly larger than the sum of the van der Waals radii of the two C atoms.

## Experimental

A mixture of 2,5 -pyridinedicarboxylic acid ( $0.32 \mathrm{~g}, 2.5 \mathrm{mmol}$ ) and $\mathrm{KOH}(0.28 \mathrm{~g}, 5 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml} ; 1: 1 \mathrm{v} / \mathrm{v})$. To the resulting turbid solution, $\mathrm{Mn}(\mathrm{acac})_{3}(0.70 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added and the solution stirred for 30 min at room temperature. After addition of phen $(0.4 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaClO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.28 \mathrm{~g}$, 2.0 mmol ) and stirring for 2 h , the reaction solution was filtered. The filtrate was allowed to stand at room temperature for two weeks to deposit orange crystals of (I).

| Crystal data |  |  |  |
| :---: | :---: | :---: | :---: |
| $\left[\mathrm{Mn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)$ |  | $D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$ |  |
| $M_{r}=613.90$ |  | Mo $K \alpha$ radiation |  |
| Monoclinic, C2/c |  | Cell parameters from 4315 |  |
| $a=33.3452$ (4) $\AA$ |  | reflections |  |
| $b=10.5753$ (1) $\AA$ |  | $\theta=2.3-25.0^{\circ}$ |  |
| $c=17.1597$ (3) $\AA$ |  | $\mu=0.61 \mathrm{~mm}^{-1}$ |  |
| $\beta=110.05^{\circ}$ |  | $T=293$ (2) K |  |
| $V=5684.35$ (13) $\AA^{3}$ |  | Block, orange |  |
| $Z=8$ |  | $0.40 \times 0.38 \times 0.26 \mathrm{~mm}$ |  |
| Data collection |  |  |  |
| Siemens SMART CCD areadetector diffractometer |  | 4933 independent reflections 3118 reflections with $I>2 \sigma(I)$ |  |
| Absorption correction: multi-scan |  | $R_{\text {int }}=0.035$ |  |
|  |  | $\theta_{\text {max }}=25^{\circ}$ |  |
| (SADABS; Sheldrick, 1996) |  | $h=-39 \rightarrow 33$ |  |
| $T_{\text {min }}=0.593, T_{\text {max }}=0.854$ |  | $k=-8 \rightarrow 12$ |  |
| 10092 measured reflections |  | $l=-16 \rightarrow 20$ |  |
| Refinement |  |  |  |
| Refinement on $F^{2}$ |  | H -atom parameters constrained |  |
|  |  | $\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right] \\ & \quad \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$ |  |
| $w R\left(F^{2}\right)=0.191$ |  |  |  |
| $S=1.03$ |  | $(\Delta / \sigma)_{\text {max }}<0.001$ |  |
| 4933 reflections |  | $\Delta \rho_{\text {max }}=0.86 \mathrm{e}^{\AA^{-3}}$ |  |
| 370 parameter |  | $\Delta \rho_{\text {min }}=-0.53$ e $\AA^{-3}$ |  |
| Table 1 |  |  |  |
| Selected geometric parameters ( $\mathrm{A}^{\circ}{ }^{\circ}$ ). |  |  |  |
| $\mathrm{Mn}-\mathrm{O} 2$ | 2.116 (3) | $\mathrm{Mn}-\mathrm{N} 4$ | 2.269 (4) |
| $\mathrm{Mn}-\mathrm{O} 1$ | 2.124 (3) | $\mathrm{Mn}-\mathrm{N} 2$ | 2.279 (4) |
| $\mathrm{Mn}-\mathrm{N} 1$ | 2.253 (4) | $\mathrm{Mn}-\mathrm{N} 3$ | 2.322 (4) |
| $\mathrm{O} 2-\mathrm{Mn}-\mathrm{O} 1$ | 85.13 (13) | $\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 2$ | 73.85 (14) |
| $\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 1$ | 101.99 (14) | $\mathrm{N} 4-\mathrm{Mn}-\mathrm{N} 2$ | 98.96 (13) |
| $\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 1$ | 91.43 (14) | $\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 3$ | 162.22 (14) |
| $\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 4$ | 90.79 (14) | $\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 3$ | 90.06 (13) |
| $\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 4$ | 95.94 (13) | $\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 3$ | 95.22 (14) |
| $\mathrm{N} 1-\mathrm{Mn}-\mathrm{N} 4$ | 165.76 (14) | N4-Mn-N3 | 72.66 (14) |
| $\mathrm{O} 2-\mathrm{Mn}-\mathrm{N} 2$ | 95.38 (13) | $\mathrm{N} 2-\mathrm{Mn}-\mathrm{N} 3$ | 93.65 (13) |
| $\mathrm{O} 1-\mathrm{Mn}-\mathrm{N} 2$ | 165.08 (13) |  |  |

The structure was solved by direct methods and subsequent difference Fourier syntheses. H atoms bonded to C atoms were placed at calculated positions, with isotropic displacement parameters riding on those of their carrier atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the State Key Basic Research and Development Plan (G1998010100) and the National Natural Science Foundation of China (Nos. 29733090 and 29973047).

## References

Drew, M. G. B., Hasan, M. \& Hello, Y. (1989). Polyhedron, 8, 1853-1854.
Holleman, S. R., Parker, O. J. \& Berneman, G. (1994). Acta Cryst. C50, $867-$ 869.

McCann, S., McCann, M., Casey, R. M. T., Jackman, M., Devereux, M. \& McKee, V. (1998). Inorg. Chim. Acta, 279, 24-29.
Manchanda, R., Brudvig, G. W., Gala, S. D. \& Crabtree, R. H. (1994). Inorg. Chem. 33, 5157-5160.

## metal-organic papers

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Shen, Z., Zuo, J.-L., Chinnakali, K., Fun H.-K. \& You, X.-Z. (1999). Acta Cryst. C55, 901-903.
Siemens (1994). SAINT and SHELXTL (Version 5.0). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stephens, F. S. (1977). Acta Cryst. B33, 3492-3495.
Wang, Z.-X., Zhou, X.-H., Yu, W.-T. \& Fu, Y.-T. (2000). Z. Kristallogr. New Cryst. Struct. 215, 423-424.
Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153-1172.

